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We investigate the problem of stability of equilibrium of a canonical system with two
degrees of freedom for the case of resonance, and use the results obtained to study the
stability of the steady motions of a satellite,

1, Statement of the problem. We consider a self-contained canonical sys-
tem with two degrees of freedom
@, o aq,  on
dte — T aq, o= 0_}7:
Let us assume that the coordinate origin coincides with the state of equilibrium of the
system and, that the Hamiltonian X is an analytic function of generalized coordinates
and impulses ¢; and p; which can be expanded into the series
H=H +Hs-+Hy+ ... + Hp + ... (1.2

where H,,, is a homogeneous function of the mth degree in ¢; and p;.

If Hais sign definite, then by the Liapunov theorem the equilibrium is stable [1], Let
us assume that M is not sign definite, but the system is stable in the first approximation,
Then, imposing certain restrictions on the frequencies w, and w, of the linear system and
on the coefficients of the forms #y and #,;, we can solve the problem of stability of the
complete system (1, 1) using the theorem given in [2], A substantial limitation of this
theorem is the requirement of the absence of resonance : that for the frequencies w; and

o2 the inequalities k@, + kotrz 5= 0 (1.3)

where k; are integers satisfying the condition 0 < | %, | + | k2 | < 4, should hold, Some
cases are, however, known [3] where the system (1,1) can become unstable in the presence
of resonance,

‘'The cases when one of the frequencies is equal to zero, or when both frequencies are
equal to each other, usally correspond to the boundary of stability of the linear system
and shall not be considered further. Putting o, > w, > 0, we find, that the inequalities
(1, 3) are invalid for @, = 2w; and ©; = 3w,. The aim of this work is to investigate the
equilibrium stability of (1., 1) in these two resonant cases, We use the Birkhoff [4] trans-
formation to obtain the Hamiltonian in the form showing the resonant character of the
problem, As far as stability is concerned, both the initial and the transformed system are
equivalent, The results obtained are expressed in the terms of the coefficients of the
Ha.niltonian (1,2).written in the form, in which its quadratic part &3 corresponds to the
normal oscillations,

(i=1,2) (1.1)
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3. Investigation of the stability when «, =20, Simple transformations

(see Section 5) yield the Hamiltonian of the problem in the form (2.1)

H=iog'P' + i0sq5'P’ + D) By 195 P12 + D) By o 2922 Py +0(1 2 19)
v=3 =4

where ’

lgl=Vart e+ i+ pd, v=vi+vitvt+v
We shall try to remove the third ordei terms from (1.1), applying the Birkhoff trans-
formation, We find that when ©, = 2w, , then all terms except the resonant ones can
be made to vanish and the Hamiltonian will become, in the new variables ¢" and py" ,

H = iogi*py" + i0as"Ps" + 8100001 Pa"™ + Eogpots™P1" + 0 (10 1) (2.2
where (see Section 5)
8’1008 = Ziooa + W03, Loae = ~— 330171 023 (1003 + iZ1002)
After the canonical change of variables
0" =0 (@ —ip), " =0y (igs® — Ps°)
=o't (—in®+ po),  pt =" (00" —ips) (2.3)
the Hamiltonian becomes (2.4)
H =101 (1 + p1°%) — 202 (@ + P2°) Vs ¥V 201 [s (9" — P2 (F10mq1° + Y1omP1°) +
+ ¢2°Ps° (Y100291° — Z1002P1°)] + O (1 ¢ )
Let us assume that the inequality

Zy® + 1w #+ 0 2:9)
holds, Then another canonical transformation
@°= @*cos0—p*sin@, ¢2°=gq" p°=q*sind+ p*cosd, p°=p* (2.6)

where . - -
8in 6 = yio02 (xfoog + y‘:ooz) .hp €05 0 == T100 (z:m -+ y{m) i

will yield the Hamiltonian in the form
H = 03 (q1** + 71*?) — 1202 (4:*2 p2*) — Vs V 203 (%300, + Yio0a) X
X [Yaq1* (p2*? — ¢2*%) 4 P1*qa*2a*1 + O (|9 1Y) 2.7

We shall show that, when the inequality (2, 5) holds, then the equilibrium is unstable,
and we shall use the Chetaev theorem [5], In the present case the function

V =12y (pa*® — qa*?) — N*q:*p* (2.8)
can be used as an aid in solving the problem of instability,
We can assume, for example, that the region ¥ > 0 is defined by the inequalities

fu* <0, p* <0, p2* < g2* < 0. By virtue of the equations of motion with the Hamil-
tonian (2, 7), the derivative dV /d¢ will be (2.9)

dv /di=1/s V 208 (2300 + Yio0e) (42*2 +P*I(22*%H p2*) + 4 (*2 + p*D)] + Q19 1)
From (2, 9) we see that in the region ¥ >0 and for sufficiently small ¢* and p;*,
the function dV/ dt is positive definite, This proves the instability of equilibrium under

the condition (2, 5).

Let us now assume that (2, 5) does not hold, Then the terms gy002"9; P22 and gog10’q2"2p"y
will be absent from the Hamiltonian (2, 1) which, consequently, may assume the follow-
ing form with the aid of the Birkhoff transformation (2.10)

H=ioq"p1" + i0202"p2" + laoso (91" 21")? + lunga" p1792" Ps” + Lo (93" Ps")* + O (| ¢ |¥)
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where lz0m, l11 and lpses-are real,and given by the formulas in Section 5, Results of [2]
show that when the inequality
lagso — 2ly391 + 4loszoz = 0 (2.11)
holds, then the equilibrium is stable, This constitutes the proof of the following theorem,
Theorem 2,1 , If the inequality zio0e® -+ yi002® 5= 0 holds for the Hamiltonian of
a perturbed motion, then the equilibrium is unstable, If, on the other hand, zie® 4
~+ yi002® = 0. and laoso — 233y -+ 4lg202 5~ 0, then the equilibrium is stable,

3, Investigation of stability when o,= 3w, We shall consider the case
of a resonance when ;== 3w,. Using the Birkhoff transformation we can cause all third
degree terms in (2,1) to vanish, Out of the fourth degree terms, only the resonant ones
and those containing ¢;" and p;* in the same degree will remain, Therefore the normal
form of the Hamiltoman will be, in the case when @, = 3.,

H=ioiq1"p" + i09q1" p2" + laoze (01" 21")* + lumga"p1" 0" " +-

+ L0203 (92" P2")* + Liooata"P2"® + Losroga"pr” 4- O ([ ¢ ) (3.1)
where
l o h’ r——3 ’ ! J—— ’ ’ ’
2020 == Ry090 ™ “Tor E300080030 — T,  B201081020 + (201 — z) Eo12082000
1 4 ’ ’ r
T Tiog S110B101t T T (20, 3 og) 5210050021
l = h’ 4 ’ ' 4 ’ ’ [‘ 3 I3
= by, 45 (01— 202) 8021081002~ T (@; + Z0og) E1200%0012 " T (200, I ) Ba10080021
4 4 ’ 2 ’ ’ 2 ’ » 2 ’ 14 2 4 ’
T (201 — wg) 5200180120 ™ T, Bzo10801n To; S110181020 T, 802018101 Ty 11108010
’ ’ ’ 3 14 r ’ ’
Loan = h0202 T 8030050003 iwg 8o10280200 — (@ — 209) 8100250310 —
1 ’ ’ ’ ’
— Ta; funfon ™ T (o) + Zog) 5120080012 3.2
l ’ ’ ’ 1 ’r ’
1000 = hyoqq — T Co; — w2 S200180012 ~ T (g — 2007 S101151002 +
2 ’ ’ 3 ’ ’
+ Tog 100280100 — T, Bo10381101
4 r ’ 1 ’ »
borso = koo — (@1 + 2007) 012081200 — Ty S111080210 +
+3 (@1 — 207) Bo21080201 — o, Boavoforut
We note that lyso, Ij;yy and loce are real and
loos = Zio0s + Y1003, losto = — Y12003* (1008 — #Y1000) (3.3)

Formulas yielding the coefficients (3,2) in terms of the coefficients of the initial
Hamiltonian, are given in Section 5,
Change of variables in (2. 3) yields

H =% 01 (0 + p12) — Y2 0392 + p°") — Ya baomo (02" + P27 P+
+ Yo hun (0 + pr°) (@22 p2°7) — Vi loren (@257 4 P2 " PP+
- 1/32 3 B [p2° (P22 — 3¢2°") (Tavoapr® — YanosTr®) F (3.4)
+ ¢2° (92> — 3P2°%) (Y1003P1° + Ta00301°)]1 + O (| ¢ )
If #0082 + yi00s® = O, then, by [2], the equilibrium is stable provided that

L9ge0 — 31 9l 0 3.5
holds, 2020 hix + 9ozos £ (3.5)
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Now assume that Zjes® -+ y100s® 5= 0. Then the canonical transformation (2, 6) in which

we have now . 3yt 2\
8in 0 == 250, (2305 + Y2003 ) % €038 = — Y3003 (¥jo0s + Yi00s ) *

yields the Hamiltonian in the form
H=3% (01°"+ p1*") — Y2 02 (32" + P2*") — Ya laomo (2" + Po**)* +
+ Y i (01" 21?) (02" + pe®) — Vi losoz (92" + pa*? )3+ 3.6)
+ 1003 V3@ g+ Vg [01° 72" (P2 — 302"%) — Pr* 2" (02" — 3pa**)] + O (1 9 )
Next we shall show that the equilibrium is unstable under the condition
3we Vx}m + Y2os = | {2020 — 3l3am1 + Vonoa | 3.7
Again we use the Chetaev theorem and take V in the form V = V, Vs, where
Vi= (pz.z + qzoz . 3P1.2 _ 391.2)2 _ (pz.z + q202)k (k > 2) (3 8)
Va=:p*pe® (p2*2 —302*%) 4+ 01°02" (2°% — 3pa"?) '
Obviously, a region ¥ > 0 exists near the coordinate origin, It could, for example,
be a set of points ¥; < 0 situated near the surface ps*® -+ qa*® =3(p,** + ¢,**) in the
region V, < 0 defined by the inequalities p,* < 0, ¢,* >0, pa* >V 3g:* > 0.
The parameter & in (3. 8) can be chosen so as to ensure that the function dV/ dt is
positive and, that the region V > 0 lies within the region dV/dt > 0.
The derivative of V can be obtained as follows, Using the canonical polar coordinates
q,* =V2r sing, P =V2r cosy, (i=1,2)
we obtain the Hamiltonian in the form
H = 30sr1 — 0sr's — ln02071% -+ l11117 172 — loagara? +

+ 1500 V'3 (g + ¥ogg) "2 ¥V Farssin (@1 + 390+ 0 ([ g %) (3.9)

Another canonical transformation
Pr=1srs, Qi=@3@s, Pr=—1ari+Yors, Qi=—3|
converts the Hamiltonian to
H = ayP2 + a,P1P;3 + agPy V P1 (P1— 3P3) sin Q1 — aoaoPa? — 902 Pa+ O (l ¢ F) (3.10)

where

ap == 3w Vzgooa -+ yfm, ay = 3 (212020 — 3l1an1), ag == — lag30 + 3lum — 2oz
The function V will then become
V =12V 3[(18P5)2 — (6P)*1P, V P, (Py— 3P3) c0s @y (3.11)

In the region V.<Z 0 ( cos Q< 0)in the new variables) near the surface pa*? + @** =

= 3(p,** + @1*?) ( Py= 0 in the new variables), V assumes positive values when
Py = 1/334(6P)"? (3.12)

where A is any number lying on the interval (-1, 1),

Using now the equations of motfon whose Hamiltonian is (3, 10) and utilizing (3.12)
we find, that, for 2 << k << 3, dV/ dt has the form

dv/ dt = 12V 3[k6¥ao cos? Q; + 12(1 — A% (a0 + aa sin Q) + [(PYIR T (3.13)
where f(P,) can be arbitrarily small as P, tends to zero, Consequently, at sufficiently

small distances from the coordinate origin, the sign of the derivative is deterrnined by
the sign of the expression
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k6 a0 cos*Qy + 12(1 — A4%) (ao + a5 sin Qy) (3.14)
from which we see that when ag > | as | dv/ d¢ > 0 and it does not become zero within
the region v > 0 , Therefore the function V satisfies all the requirements of the Che-
taev theorem, and this, in turn, proves the instability under the condition (3, 7).

Let us now suppose that (3, 7) does not hold, If we truncate Expression (1,2) for the
Hamiltonian so that no terms of order higher than fourth in ¢; and p; appear in it, we
can show that the equilibrium is stable within this approximation,

Indeed, in this case the system possessing the Hamiltonian (3, 10) has two integrals

Py = const,  aPy + a,P\ Py + aoP,V Py(P, — 3Py) sin Q; = const
Let us consider the function
V = [agPl’ + 01P1P’+ aoP1 VPI(PI -_— SPS) sin 01]’ + P]‘ (3_15)

Obviously dV/ dt = 0 and it can easily be shown that when 4o <] as| then the
function (3, 15) is positive definite in the vicinity ¢; = p; = 0. Therefore, by the Lia-
punov theorem [1], the equilibrium {s stable within the approximation considered and
thig constitutes the proof of the following theorem,

Theorem 3,1, If the inequalities

Tioos* + Yioo® F 0, 303V Z%o0s T yaoos? > | laoso — 3lyyy3-+leaeal,

hold simultaneously for the Hamiltonian of the perturbed motion, then the equilibrium
is unstable ; if, however, the last inequality is of the opposite sign and the Hamiltonian
contains no terms of the order higher than the fourth, then the equilibrium is stable,

It is also stable when
Z1008* + y100s* =0, l2ooz — 3lyy1y + Ylozoz =~ 0

hold simultaneously.

4. Stability of the steady rotations of a satellite, Asanexample,
we shall consider the stability of steady rotations of a satellite in the case of a resonace,
We know [6] that when a dynamically symmetric satellite moves along a circular
orbit in a central Newtonian gravitational field, it can assume several positions in the
orbital coordinate system, Its axis of symmetry may:

1) be perpendicular to the orbital plane,

2) lie in the plane perpendicular to the radius vector,

3) lie in the plane perpendicular to the velocity vector,
and it rotates about this axis with the constant angular velocity,

Stability of the steady rotation of the type (2) has been fully investigated, The cases
lacking a solution are those [7] of the resonance ®, = 2w; and ®; = 3w, for the motions
of the type (1) and (3), when the function H. is not sign definite, but the motion is stable
in the first approximation,

For the motion of the type (1), the Hamiltonian (1.2) has only even order terms (m is
even), Therefore zips* + y1002® = 0 and, by Section 2, the motion will be stable pro~
vided that the inequality (2. 11) holds for oy = 2ws:. According to [7], the inequality
(2.11) breaks down st two points & and P of the parametric plane, where @ = C/4 and
= ro/wo (A and ¢ are, respectively, the equatorial and polar moment of inertia of the
satellite, ro denotes the component of the absolute angular velocity projected on the
axis of symmetry and being the integral of motion and wo is the angular velocity of the
center of gravity moving along the orbit), When investigating the stability for the case
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©; = 3ws, we compute the values of the function ap — | a3 | along the curve ', = 8aw;,
beginning with the values of B of large absolute magnitude (B = — 114). As a result
we find, that the function is positive for — 1.743 < p < — 1.566 and '0.384 < p < 0. 45.
Consequently, by Section 3, the motion of the type (1) is unstable over the above values
of B. On the remainder of the resonance curve the stability can only be proved by con-
sidering the Hamiltonian (1,2) truncated beyond the fourth order terms,

Computations show that in the case of motion of the type (3), we have the instability
along the whole resonance curve for both, @, = 2wz and @; = 3wz .

§. Numerical formulas . We know (see e, g, [8]) that a real, linear, canonical
transformation exists, which reduces Ha to the form corresponding to the normal oscilla-
tions, Therefore we can assume that the Hamiltonian (1,2) has the form

H= l'/ 2 (pl' + ml’ﬂl’) - l/ 3 (p" + (l)n’q") + E g [ RRN QIV'QS"'PI%P!“ +.
V=g

+ Z h\mlnﬁ"n qlv' q". plv. P". + tee (5")
vemd
Employing the canonical change of the variables
=g’ +io7lpy’, p=ihog’ + py,
Ga=—ifaqs +0"1py, Ppa=—1Ys0u0 +ipy (5:2)
we can reduce the Hamiltonian (5, 1) to the form suitable for the Birkhoff transformation,
The resulting Hamiltonian will have the form (2.1), where

o030 = o030 T 00300 €000 = — /8 O1® (Ygogo + i%o0g0)s  E1020 = 1030 + Y090

Ean10 = — /3 01 (Y1020 + iZ1020), Eoza0 = Torm0 + iYorz0
Ea001 = Y3 ©120571 (Yorzo + i%o120), 81011 = Tron + Y1011,  Byy40 = Y2 ©2 (Yrou + izr031)
Boom = Fooms + Yoomt,  B3100 = Yo 0103 (Yoou1 + iZuwm)s 810y = T10en + ig100m
g('mo = = 0703 (Yuoos + izi0m), (')om = Zona + iYoors (5.3)
g;zoo = — 1 01092 (Yoo1a -+ iToo1s), g;m = Zom + iYou1s 3;101 = — Y3 01 (Yorus + izomn)

Eogor = Fommn + iYozon, B0z = 2037 (Yozor -+ i%0301),  Eopag = Zooos + iYovss
g{,m = 1/3 @3® (Yoo0s -+ iZo000)

Tooso = Looso — W12 2000,  Yooso = O171 g1omd — 17% Laoco,  Trozo = — /3 £1020 — /2 017 Zaee
Y1020 = %3 O1goos0 -+ /2 0171 2010,  Zorao = — /3 Wagoom -+ /2 0171 ganxo -+ Y2 01~ 0ag 3001
Yor120 = — /2 Borzo — /3 010981011 + Y2 0172 ga100,  T10m1 = — 180021 — W1~ 2001
Yion1 = 010372 gorao + O 102 gar00,  Tooar = Wg~! gorzo — @17 From — O30 garoo  (54)
Yooz1 == Looo1 + 0171 @97 ganao — O3 2001,  Taoos = — /2 @1037 gor11 — Y3 G1003 -+ 12 0272 gysoe
Y1002=— Yz 0180013+ /3 01057 gomot Y2 @27 gnon,  Foorz = — goorz + @2 goz0— 017 g
Yoora == 02~ gorn — O172 g100s + 01710272 g1200,  Tomu1 == @) Dag1002 + O17F ©37* 1200
Yoru1 = — Wagoo1z — W goar0, Tozoy =-—1/cW2gor02~ ¥4 W3 'gowo,  Yozo1 = /s Wa’gooos + Y4goam
Tooos = — W37 goros -+ @273 Goso, Yovos = — Looos + Va3 goron

The coefficients accompanying the fourth degree terms in (2. 1) which are relevant
to our investigation, will be
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I3

honae == — /2 013 hooso — 2fa @1~ hyoo0 — 15 hagze
hy11y = 010sho0as + 0171037 hageo + 010972 hoasg -+ 03005~ higgn

’

Pog03 = — %3 @2 hooos — /3 033 hoso0 ~— /s hones (5.5)
hrody = t10s ~+F iv1008,  hrggyy = — Y4 011 039 (41008 — iB1000)
where
U100 = /2 ©1hoors -+ /2 W2~ higon — 3 0971 h1zon — /g 1053 hgggy
Vio0s = — /s @102~ horiz — /3 1008 + /2 037 hyaor + 1/ a0y 3™8 hrgqyg (5.6)
Formulas (5, 3) — (5, 6) yield, for @ = 3w,

IIMO = h;m + ”/0 wg? (3(2)030 + ygo30) + 8/2 (zgozo + y¥020) + '/10 (xglzo + yglm) =
L 12 (Zho11 T+ Yions) — /6 022 (2hgs, + Yaoe) (5.7)
L = hygyy — s (F00g + Yioes) T+ Y10 @22 (23035 + Ygogy) — %10 022 (021 T+ Yoom) —
w38/ (23190 + Yorgo) T 2 (Zor11®r020 - Yoruyaoz0) — 4372 (Tozoa¥re11 + ZronYoron)
Im = h:)wg b ,/l (')l’ (22003 + y(2)003) - 60)3-"($3m1 + ygzol) + l/ﬂ (zgm + yzm) +
+ ¥ (%gy11 + Yoran) T Yoo 02% (T304, + Y3r)
1008 = 1008 -+ iY1p08, loz10 = — /13 @33 (%1008 —- iV1009)

where ~
Z1008 = U1003 — */5 (Zo120 Zoorz 4 Yo12040012) — ©27 (Tre02Y1011 - Tr011Y1002) +

—+ 4ws2 (T1002%0201 4 Y1002Y0201) +- /2 (To0os Torrr 4+ YooosYorur)
Y1008 = V1003 — /5 (To120¥0013 — Too1zYo120) — W27 (YremY1002 — Z1011%1002) -
- 403™% (Zo201%1002 — T1002Y0201) + %2 (Zo111 Yooos — FooosYorna)

In the practical investigations of stability, the Hamiltonian should be reduced to the
form (5. 1) and formulas given in Section 5 employed, together with the Theorems 2.1
and 3,1,

The author thanks V, A, Sarychev for constructive criticism,
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