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We investigate the problem of stability of equilibrium of a canonical system with two 
degrees of freedom for the case of resonance, and use the results obtained to study the 
stability of the steady motions of a satellite. 

1, Bt&t@mOnt Of the problem. We consider a self-contained canonical sys- 
tem with two degrees of freedom 

+J, arc dg, dir -=-- 
dt “qi ’ 

-=- 
dt apt 

(i = 1,2) (1.1) 

Let us assume that the coordinate origin coincides with the state of equilibrium of the 
system and, that the Hamiltonian H is an analytic function of generalized coordinates 
and impulses qj and pi which can be expanded into the series 

H = Hz f Ha f H,, f . . . + H,,, i- . . . (1.2) 

where H,,, is a homogeneous function of the mth degree in Qi and p;. 
If HS.is sign definite, then by the Liapunov theorem the equilibrium is stable [l]. Let 

us assume that Ha is not sign definite, but the system is stable in the first approximation. 
Then, imposing certain restrictions on the frequencies or and wa of the linear system and 

on the coefficients of the forms If3 and H,, we can solve the problem of stability of the 
complete system (1.1) using the theorem given in [2]. A substantial limitation of this 
theorem is the requirement of the absence of resonance: that for the frequencies or and 

02 the inequalities 
k,o, + &oz # 0 (1.3) 

where ki are integers satisfying the condition 0 < 1 k, 1 + 1 kz 1 < 4, should hold. Some 
cases are, however, known [3] where the system (1.1) can become unstable in the presence 
of resonance. 

The cases when one of the frequencies is equal to zero, or when both frequencies are 

equal to each other, usally correspond to the boundary of stability of the linear system 
and shall not be considered further. Putting o1 > o2 > 0, we find, that the inequalities 
(1.3) are invalid for or = 20~ and or = 30~. The aim of this work is to investigate the 
equilibrium stability of (1.1) in these two resonant cases. We use the Birkhoff [4] trans- 
formation to obtain the Hamiltonian in the form showing the resonant character of the 
problem. As far as stability is concerned, both the initial and the transformed system are 
equivalent. The results obtained are expressed in the terms of the coefficients of the 
Hamiltonian (1.2). written in the form, in which its quadratic part Ha corresponds to the 

normal oscillations. 
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3. Invrrtlgrtion of tha rubflfty whrn 01-201. Simple uansformaths 
(see Section 5) yield the Hamiltonian of the problem in the form (2.1) 

I q 1 = P-q? + qna + pla’+ pas, V = Vi + Va + WI + V4 

We shall uy to remove the third order terms from (1.1). applying the Birkhoff trans- 
formation, We find that when or = 2% , then all terms except the resonant ones can 

be made to vanish and the Hamiltonian will become, in the new variables Qt” and Pi” , 

If = i~~ql%’ + iclhq2”pC + g&@pP+ g&Oqs%* + 0 (I q 1’) (3.2) 

where (see Section 5) 
g’lm = 2100s + tylo~, g0310' = - %o~%33(y,003+ h03) 

After the canonical change of variables 

ql* = “I-‘~~ (qlo - ifi”), q3’ = e-“* (iql’ - A’)# 

fi’ = I/&‘* (- iq1” + p,“), A” = l/,@l”s ((I¶” - ips’) (2.3) 

the Hamiltonian becomes (2.4) 

H= l/30h(Ql"*+ Pl"3) --'/sor (!I¶"'+ A031 d-'/s v2s ['/a (~r"*-P3°'w103Ple + Y1oolhO) + 
+ 4r0Ps” (Yloo191° - soo¶Pl”)l~+ 0 (I 0 I’) 

Let us assume that the inequality 

Xisos + Yrwss # 0 

holds. Then another canonical transformation 

(2.5) 

71 O= qr*cos9-p~*sin0, qs’=qaT, m 0 = ql* sin 8 + p1+ cos 8, ho = ~9 (2.6) 

where 
sin 9 = ~1002 (Zig + Yiooa )-“I, cos 0 = w08 (+m -t- yim ) -‘Ia 

will yield the Hamiltonian in the form 

ff = *(q1*2 + PP) - ‘/a% (P+ P??) - r/a 1/2or.@&+ Y&) X 

x [l/m* p2+3- 4a*3 + Pl*~a+h+l+ 0 (1 P I’) (2.7) 

We shall show that, when the inequality (2.5) holds, then the equilibrium is unstable, 

and we shall use the Chetaev theorem [5]. In the present case the function 

v= ‘/ZPl’ (Pa*s - qs*a) - q1+qs+pn* (2.3) 

can be used as an aid in solving the problem of instability. 
We can assume, for example, that the region V > 0 is defined by the inequalities 

qs* < 9, PI* < 0, pz* < qzi < 0. By virtue of the equations of motion with the Hamil- 
tonian (2.7), the derivative d V / dt will be (2.9) 

dl’/dt =‘/a 1/20 3 ( +ooz + Y&,,,) (qz*a +pa*3)[(qz+a;+ ~a*~) + 4 (7P3 + PI*‘)I + Q (1 q 17 
From (2.9) we see that in the region V> 0 and for sufficiently small qi* and pi* , 

the function d V/ dt is positive definite. This proves the instability of equilibrium under 

the condition (2.5). 
Let us now assume that (2.5) does not hold. Then the terms g1002’q1’pz’2 and ~os10’q2’2p’1 

will be absent from the Hamiltonian (2.1) which, consequently, may assume the follow- 
ing form with the aid of the Birkhoff transformation (2.10) 

H= iolql”pl” -I- i~a~z"pz" +h0m(~l~~~'?3-l- hql'pl"qa"fi" f bs(q3'pl")3 + O(I q Is) 
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where Izor~, Zrrrr and h are real,and given by the formulas in Section 5. Results of E] 
show that when the inequality 

&l - 2zr11, +4Loa+o (2.11) 

holds, then the equilibrium is stable. This constitutes the proof of the following theorem. 

Theorem 2.1 . If the inequality ~00~~ $ yroo,a # 0 holds for the Hamiltonian of 

a perturbed motion. then the equilibrium is unstable. If, on the other hand, zrooll f 

+ yroos’ = 0. and 12020 - 21,,,, + 410%$ # 0, then the equilibrium is stable. 

3. Inveatfgrtion of ttrbility when ol= 301. We shall consider the case 
of a resonance when or= 30~. Using the Birkhoff transformation we can cause all third 
degree terms in (2.1) to vanish. Out of the fourth degree terms, only the resonant ones 
and those containing qr” and pi’ in the same degree will remain. Therefore the normal 

form of the Hamiltonian will be, in the case when or = 301 , 

H= hm”pl” + iw72”p2’+ I20a0(41"m")~+~ll~~q~"~r"q~~m" + 

+ ~0201(Q2"pa")*+Eioo2Qi"Pa"* + baioQa”8pt” +O(l Q 1’) (3.4) 
where 

laou, = him - + 4YJog~o3ll - & giOIOgkZO + i @ali- 02) ’ go1aogm1 - 

- -&- g;llog;Oll- i (&jl’+ 02) ~hOsi021 

Lrr = h‘ 1111 + i (ml 

4 
- 2%) &10&02 - i (01: 20,) ~hO4O12- 

4 
i (& + a) L&O2l- 

loma = hboa - -& g&&,,,o3 - 3 ’ 
1 

ig gOlO2gtk - i (WI - 24) &O?AlO - 

- & g;lolg~ll* - 
1,= hi,,- i (2m12- @) gkOlg~O12 - i (01 i! 2@) 4011gi02 + 

+ -&- &&ma - 2 g~lo,g;lol 

(3.2) 

1 on, = h;,,, - i (01 i Zw) gktll~kOO - & &lOgkO + 

2 
+ i(q -2202) &2,0&201-& ’ ’ 6300g0111 

We note that lzmo, lrlll and lo?cz are real and 

ho03 = w03 + iYl003, I 0310 = - l/1202’ (soos - ~Y1003) (3.3) 

Formulas yielding the coefficients (3.2) in terms of the coefficients of the initial 
Hamiltonian, are given in Section 5. 

Change of variables in (2.3) yields 

H = a/z 02 (q102 + pl”:, - l/z o;(q2”z + p202 ) - l/4 ho20 (91°2 + Ple2 )’ + 

+ ‘f4 lull (qlo2+ plOZ) (9202 + p202) - 114 kl2O2 (Qz”= -I- P202 )’ -!- 

-!- l/13 1’30, [p?” (?G3 - 3q201) (%33P1° - Yloo311°) -f- (3.4) 

+ !7a” (92O2- 3~2”) (~~003~~ + ~1003~l”)l+ 0 (I 9 is) 

If zr,~& i- YJC& = 0, then, by p], the equilibrium is stable provided that 

holds. 
120!?0 - 311111 + %208 # 0 (3.5) 



Stability of a canonical system with two degrees of freedom 769 

Now assume that z1)oQ’ + ~1~s # 0. Then the canonical transformation (2.6) in which 

we have now sin 6 = zlaoa (7&s + ytWs )-“*, cos6= - Y1ooa (#eeJ + Y:&)+ 

yields the Hamiltonian in the form 

H = s/1 @a (Q/ + P102) - l/z oa (da+ p!zea ) - l/4 ho20 (q? + P1*‘)s + 

+ l/4 hln(Q1*a+ Pl’“) h”+ Pa**) - s/4 boa w'+ PO+ (3.6) 

+ l/l% @a -V3 Pa loos+ Y&) ta*pa* w- 3ql*a) --m*qa* w’- 3Pa1+ 0 (I 4 I') 

Next we shall show that the equilibrium is unstable under the condition 

36)9 VZ$)as + !&).s >, 1 ho2ll- 3hll -F 9bma I (3.7) 

Again we use the Chetaev theorem and take v in the form V = I’1 Y1, where 

Y1= (pi’s + fI1.s - 3p1.s - 3ql*ay - @*‘a + q/y 

Vz = p1’p..’ (p3.2 - 3q2’9 + q1*q2* (q,‘a - 3P*‘2) 
(k > 2) (3.6) 

Obviously, a region V > 0 exists near the coordinate origin. It could, for example, 
be a set of points V1 < 0 situated near the surface pP* -i- q$ =3(p,*’ -i- ql*‘) in the 

region V, < 0 defined by the inequalities p1* < 0, ql+ > 0, pr* > vsq2* > 0. 

The parameter k in (3.8) can be chosen so as to ensure that the function d V / dt is 
positive and, that the region V > 0 lies within the region dV / dt > 0. 

The derivative of V can be obtained as follows. Using the canonical polar coordinates 

qr l = T/qsin ‘pi, Pi* = fq-cos ‘pi (i = i,2) 

we obtain the Hamiltonian in the form 

H=3&1- ms7%- h20r? + lIlllrlra-lo20trf+ 

fl/dJhV3( ~&a + Y&A h VGGsin (w + 3q-b) f 0 (1 q 1”) (3.9) 

Another canonical transformation 

P1= 111 r1, Q~=(PI+~R, Pz=-l/~rl+lJ~r2, Qa=-391 

converts the Hamiltonian to 

If = M’? + @19+ a& I/& (P1- 3P1) sin Q1- 9l1a&‘1* - 9eG’a + 0 (I q 16) (3.10) 

where 

=o = 303 V$o, + Y& a1 = 3 (21,020 - 3fllllh aa I - f*o?o + 31,111 - Slaoa 

The function V will then become 

V = 122/z[(i8P1)a - (6P,)“‘]P, J/P, (P1- 3P1) cos 91 (3.11) 

In the region V,< 0 ( COB Q1< 0) in the new variables) near the surface pa*l + quip = 

= 3(pl*o + q1*2) ( p2= 0 in the new variables),, Y assumes positive values when 

Ps = 1/&(6Pl)k’a (3.12) 

where _4 is any number lying on the interval (-1, 1). 

Using now the equations of motion whose Hamiltonian is (3.10) and utilizing (3.12) 
we find, that, for 2 < k < 3 , dV / dt has the form 

dI’/ dl = 12l/‘%kB’ao COST Q1 -I- 12 (1 - A’) (ao f aa sin 91) + f(p1)]p1k+3 (3.13) 

where, f(P,) can be arbitrarily small as P, tends to zero. Consequently, at sufficiently 
small distances from the coordinate origin, the sign of the derivative is deterrnined by 
the sign of the expression 
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kekao cosaQl + 12(1 - A’) (a0 + a, sin QJ (3.14) 

from which we see that when a0 > I aa J dv / dt > 0 and it does not become zero within 
the region V > 0 . Therefore the function V satisfies all the requirements of the Che- 
taev theorem, and this, in turn, proves the instability under the condition (3.7). 

Let us now suppose that (3.7) does not hold. If we truncate Expression (1.2) for the 

Hamiltonian so that no terms of order higher than fourth in qi and pr appear in it, we 
can show that the equilibrium is stable within this approximation. 

Indeed, in this case the system possessing the Hamiltonian (3.10) has two integrals 

P3 = const, a#~’ + @,Pa + a#,)) Pl(P, - 3Pa) sin QI = const 
Let us consider the function 

v = [alPIs -I- alPIPs+ IZOP~VPI(PI - 3Pa)sin OJ' + PI' (3.15) 

Obviously d V / dt = 0 and it can easily be shown that when 00 < I ua 1 then the 

function (3.15) is positive definite in the vicinity qi = pi = 0. Therefore, by the Lia- 
punov theorem [l]. the equilibrium is stable within the approximation considered and 
this constitutes the proof of the following theorem. 

The o re m 3.1 . If the inequalities 

zrood + Y1002 # 07 3~V&oa + yrooas > I lsoso - 3~,,,+%sosl, 

hold simultaneously for the Hamiltonian of the perturbed motion, then the equilibrium 

is unstable ; if, however, the last inequality is of the opposite sign and the Hamiltonian 

contains no terms of the order higher than the fourth, then the equilibrium is stable. 
It is also stable when 

Zlaob + y1ool?= 0, 1200s - 311111 + %2&X * 6 
hold simultaneously. 

4. Strbility of the &tardy rotation8 of a :rtellfte. Asanexample, 
we shall consider the stability of steady rotations of a satellite in the case of a resonate. 
We know [S] that when a dynamically symmetric satellite moves along a circular 
orbit in a central Newtonian gravitational field, it can assume several positions in the 
orbital coordinate system. Its axis of symmetry may : 

1) be perpendicular to the orbital plane, 
2) lie in the plane perpendicular to the radius vector, 
3) lie in the plane perpendicular to the velocity vector, 

and it rotates about this axis with the constant angular velocity. 
Stability of the steady rotation of the type (2) has been fully investigated. The cases 

lacking a solution are those [7] of the resonance o1 = 203 and or = 3os for the motions 
of the type (1) and (3), when the function Hs is not sign definite, but the motion is stable 
in the first approximation. 

For the motion of the type (l), the Hamiltonian (1.2) has only even order terms (m is 

even). Therefore ~~00s~ + YIOOZ~ E 0 and, by Section 2. the motion will be stable pro? 
vided that the inequality (2.11) holds for ol = 20s. According to 171, the inequality 
(2.11) breaks down st two points a and p of the parametric plane, where a = C/A and 
$ = r,~/oo (A and C are, respectively, the equatorial and polar moment of inertia of the 

satellite, r. denotes the component of the absolute angular velocity projected on the 
axis of symmetry .and being the integral of motion and 00. is the angular velocity of the 
center of gravity moving along the orbit). When investigating the stability for the case 
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(61 = 301, we compute the values of the function a0 - 1 aa 1 along the curve’ <os = 3%, 
beginning with the values of fi of large absolute magnitude (fi = - 114): As a result 
we find, that the function is positive for - 1..743 < fl< - 1.566 and ‘0.364 < p < 0.45. 
Consequently, by Section 3, the motion of the type (1) is unstable over the above values 
of p. On the remainder of the resonance curve the stability can only be proved by con- 
sidering the Hamiltonian (1.2) truncated beyond the fourth order terms. 

Computations show that in the case of motion of the type (3). we have the instability 
along the whole resonance curve for both, o1 = 2% and o1 = 301s . 

6. Numerfcrl formulas . We know (see e. g. [8]) that a real, linear, canonical 
transformation exists, which reduces HI to the form corresponding to the normal oscilla- 
tions. Therefore we can assume that the Hamiltonian (1.2) has the form 

(5.1) 

Employing the canonical change of the variables 

91 = IJs pi + irh-~~‘, fi = % Sqi -I- PI’, 
Qs = - i/a 9r’ + e-l Pa’, h = - s/s eq,* + ipl’ (5;2) 

we can reduce the Hamiltonian (5.1) to the form suitable for the Birkhoff transformation. 
The resultin Hamiltonian will have the form (2. l), where 

, 
g,,= ’ =oo30 + iyoo30, gjooo = - l/8 mla ~~~~~~ + izo,30), gioao = =loro + i~,~,, 

, 
gao10 = - l/s ol (Ylolo + hzo~, g;, = zol¶o + iYol2o 

, , 

hool = '/!I wh-1 (YOlzo + ~zono), g1ol1 = =I011 + ~YlOll, gko = lh 09 (YIOU + hali) 
, , 

go021 = w31+ iyo03h g,, = l/8 ala* (Y~ou+ bd, g& = ~1003 + iym 

g Alo = - VS ealols (ylo0a + izmfd, gkl, = -1% + iyool3 (5.3) 

g;,, = - l/s olosa (y00n + &on), g&, = z0111+ iyOllll g;lol = - VS 01 (YOUI f iz0ld 
, 

&201= n201+ im01, giloa = se-l (y0201 -I- &201), gk = ~0000 + h00 
, 

&SO0 = %I a8 b008 + h000) 

%080 = go000 - 01* g2010, yooao = w-1 gmb - 01* gsooo, %mo = - l/t gml - Y¶ a* gum 

I1030 = 8/a %gooan + ‘/a 01-l gaoio, Sir0 = - l/s oggooa + ‘h e-1 gmo + lh ~~Waool 

Yono = - ‘/a go120 - l/s ~l-~zgloll+ l/r 01-l gmo, 21ol1= - Q&on- w-1 gsoo1 

Ywl = Ol@a-’ golao + @l-l%%loo, ~ooal = %-’ golzo - %-1 gioll - @l%-1 grioo (5!4) 

yoo91 = go921 + w-1 OS-1 g1110 - al* g2w1, mos = - ‘h 01ol-1 gem - l/r gmn + l/t or-’ g,¶a 

y1oo2= - l/s woola+ ‘h mm* gw10+ ‘I!4 ol-1 g1101, zw1a= - go012 + ol-o~ouo- ol’~@s%1ol 

yoon = a-1 go111 - @l-l gim + @l-1*- g1200, zou1= w-‘w1wr + a-1 or-1 gmo 

YOlll = - mgw1a- Qa-‘gosloe ZOzol = --l/4 oago1oa- O/4 @a-‘goao0, WI241 = ‘/4 or’goaoo + l&am 

%oos = - or-’ go1w + w-o goono. yooos = - gooor + or-’ golo1 

The coefficients accompanying the fourth degree terms in (2.1) which are relevant 
to our investigation, will be 
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where 

(5.5) 

(5.6) 
Formulas (5.3) - (5.6) yield, for or= 30, 

‘lozo = ~;~ + s7/a aa (&lJ + Y&J) + */a ($oso + Y;q,,) + e/10 (s&so + Y&J - 

- l/s (#err + Y;orr) - */se oaa (&r + Y&s,) (5.7) 

hll = $,,1- 7s (&* + Y;,, + */lo oa2 c&2 + Y&I,) - 2/14 a2 (2& + y&) - 

- ‘% t&o + Y&.&J + 2 (~0111~10lo + YOlllYlo20) - 401-r (%2olYloll+ ~lollyo2ol) 

ha = hk - */a wl* (z&9 + Y,&) - 6op-*(&,r + Y&l1) + ‘/a (&Q$j + Y&J + 

f % ($rtr+ Y:rir) + %o oa’ (qeis + Y&t*) 

hoor = ao8 + iYlp08, lo810 = - l/12 W (mo3 -- iYlw8) 

where 
qooa = mos - @/s (ZOlZO GM12 + Y0120Y0012) - 01-l (?oo2Y1011 + z10lly10ca) + 

+ 40a-s (mo2~0201+ Y1002Y0201) + *;/2 (so003 zo111+ Yooo3YOlll) 

YlooS = VlOo3 - O/5 (~0izoYooia - %o12Yo120) - WW1 (Y1011Y1~2 - ~10~~1002) + 

+ 401-r (~OaolYloo2 - %!2Y02o1) s % (ZOlll Yoom - ~0oo3Y0111) 

In the practical investigations of stability, the Hamiltonian should be reduced to the 

form (5.1) and formulas given in Section 5 employed, together with the Theorems 2.1 

and 3.1. 
The author thanks V. A. Sarychev for constructive criticism. 
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